17. The area of the first quadrant region bounded above by the graph of $y = 4x^3 + 6x - \frac{1}{x}$ between the inputs x = 1 and x = 2 is

(A) $32 - \ln 2$

(B) $30 - \ln 2$

(C) $24 - \ln 2$

(D) $\frac{99}{4}$

(E) 21

- 7. The area of the region bounded below by $f(x) = x^2 7x + 10$ and above by $g(x) = \ln(x 1)$ is closest to
 - (A) 7.350
 - (B) 7.360
 - (C) 7.380
 - (D) 7.400
 - (E) 7.420

- 9. The area of the region completely bounded by the curve $y = -x^2 + 2x + 4$ and the line y = 1 is
 - (A) 9.767
 - (B) 10.217
 - (C) 10.667
 - (D) 11.117
 - (E) 11.567

Ans

- 7. The area of the first quadrant region bounded by the y-axis, the line y = 4 x and the graph of $y = x \cos x$ is approximately
 - (A) 4.520
- (B) 4.538
- (C) 4.556
- (D) 4.574
- (E) 4.939

- 17. The area of the region bounded by the lines x = 1 and y = 0 and the curve $y = xe^{x^2}$ is
 - (A) 1 e
 - (B) e-1
 - (C) $\frac{e-1}{2}$
 - (D) $\frac{1-e}{2}$
 - (E) $\frac{e}{2}$

- The area of the first quadrant region bounded by the curve $y = e^{-x}$, the x-axis, the y-axis and the line x = 2 is equal to
 - (A) 1
 - (B) 2
 - (C) $\ln e^x$

 - (D) $\frac{1}{e^2} 1$ (E) $1 \frac{1}{e^2}$

- 5. The region bounded by the x-axis and the part of the graph of $y = \sin x$ between x = 0 and $x = \pi$ is separated into two regions by the line x = k. If the area of the region for $0 \le x \le k$ is one-third the area of the region for $k \le x \le \pi$, then k = 0
 - (A) $\arcsin \frac{1}{3}$
 - (B) $\arcsin \frac{1}{4}$
 - (C) $\frac{\pi}{6}$
 - (D) $\frac{\pi}{3}$
 - (E) $\frac{\pi}{4}$

17. The area of the region bounded by the graphs of $y = \arctan x$ and $y = 4 - x^2$ is approximately

- (A) 10.955
- (B) 10.972
- (C) 10.989
- (D) 11.000
- (E) 11.023

- 25. A region in the plane is bounded by the graph of $y = \frac{1}{x}$, the x-axis, the line x = m and the line x = 3m, m > 0. The area of this region
 - (A) is independent of m
 - (B) increases as m increases
 - (C) decreases as m increases
 - (D) decreases for all $m < \frac{1}{3}$
 - (E) increases for all $m < \frac{1}{3}$